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The effect of elongation and triangularity of flux surfaces on the local and global stability of high-n
ideal ballooning modes in a high-B tokamak are investigated. The equilibrium surfaces are obtained by a
numerical solution of the Grad-Shafranov equation using an efficient algorithm based on a generalized
variational technique. A marginal stability analysis of these surfaces is carried out in which the equilib-
rium shift, elongation, triangularity, and their radial variations are taken into account. The influence of
the cylindrical safety factor (g, ), as well as the variations in the shape of B and g profiles, on the max-
imum attainable beta value (3,) are also considered. Detailed numerical results, over a wide range of pa-
rameter space, show that the effect of boundary elongation «, is always stabilizing while the effect of
boundary triangularity 8, depends on the values of k, and g.. It is found that for elongated cross section
(k, > 1.6), the effect of 8, is always stabilizing. We present an alternative scaling law that effectively
captures these features of the shape parameter dependences. For a JET (Joint European Torus) -type
plasma, broad S profiles and g profiles that tend to be flat in the interior are found to be favorable for
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achieving a high . value.

PACS number(s): 52.35.Py, 52.55.Fa, 52.30.Bt

I. INTRODUCTION

It has been well established both theoretically [1-3]
and experimentally [4,5] that the high-n ideal ballooning
modes play a crucial role in limiting the plasma B value
in tokamaks (where n is the toroidal mode number and 8
is the ratio of the plasma pressure to the magnetic-field
pressure). Among the various factors that influence the
stability of these modes, the effect of the shape of the
plasma boundary has received attention in some recent
studies [6—10]. Kwon and Hender [6] have examined the
role of the plasma shape in gaining accessibility to the
second ballooning stability regime. In D III-D (doublet
I11-D) experiment [7], a record high B of 11% has been
achieved by taking a D-shaped plasma boundary with
elongation «,=2.34. The effect of the triangularity of
the plasma boundary on the S limit set by ideal balloon-
ing modes has also been studied in [8-10] for typically
high values of boundary elongation (x, >1.9). In general
the effect of triangularity is found to be stabilizing. A
simple scaling law for the maximum f for marginal sta-
bility to high-n ballooning modes has been obtained in
[11] in terms of elongation «,, g. and aspect ratio A.
Some scaling laws incorporating triangularity 6, have
been obtained in [12,13]. The scaling laws are usually
valid over a limited parameter range. Nevertheless they
emphasize the fact that the plasma geometry, as well as
the B and q profiles, play an important role in determin-
ing the maximum achievable 8, and much further work
needs to be done to elucidate the complex dependencies
on these factors. The present work is motivated by such
a consideration, and we investigate in detail the effect of
elongation (1=<«, <2), triangularity (0=6, <0.2), and
the modified edge safety factor g, [defined in terms of
(current)/(area)] on B, using typical forms for B and ¢
profiles. We also consider variations in the shape of the
and q profiles for a specific case of a JET (Joint European
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Torus) -type plasma boundary in order to study their
influence on the overall global stability. We find that the
effect of triangularity §, is not always stabilizing, but de-
pends on k, and g, values. The detailed dependencies are
elucidated by an extensive numerical study of the local
stability of ballooning modes on various flux surfaces,
and over a wide range of parameter values. A unified
scaling law capturing these features is presented. It may
be noted that the shape of the flux surfaces depend not
only on the boundary shape but can also be influenced by
other factors such as sheared equilibrium plasma flows
[14,15]. Thus our study could have some relevance for
stability of equilibria with flows.

The paper is organized as follows. In Sec. II we discuss
the equilibrium solution of the Grad-Shafranov equation
in the high-B tokamak limit. The method is based on a
variational formulation and yields a set of ordinary
differential equations which are numerically solved for
the shift, elongation, and triangularity of the equilibrium
flux surfaces. The ballooning-mode stability equation for
these surfaces is written down in Sec. III, and its method
of solution discussed. The results from local and global
stability analysis and a unified scaling law are presented
and discussed in Sec. IV.

II. VARIATIONAL EQUILIBRIUM

We adopt a variational formulation to compute the
plasma equilibrium of a high-B tokamak plasma. This
approach was first used by Choe and Freidberg [16] to
calculate arbitrarily large Shafranov shifts of circular flux
surfaces and to study their effect on ballooning-mode sta-
bility. Mauel [17] extended this analysis to calculate both
the shift and elliptic elongation of the flux surfaces. In
our formulation we further generalize the method to in-
clude the triangularity of the flux surfaces. A major ad-
vantage of the variational formulation is that it obviates
the need to solve a partial differential equation, and
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reduces the equilibrium problem to the solution of a set
of ordinary differential equations. It thus provides for a
simple and efficient computational solution, which is also
reasonably accurate when compared to direct numerical
solutions of the Grad-Shafranov equation. The variation-
al approach also leads to direct computations of the
profiles (and the radial derivatives) of the Shafranov shift,
elongation, and triangularity of equilibrium flux surfaces.
These quantities are of direct relevance to the stability
analysis.

Following Choe and Freidberg [16], we adopt the
high-B tokamak ordering (B;~¢, B,~1/€, g ~1, where
€e=a /R, is the inverse aspect ratio), in which the Grad-
Shafranov equation for the tokamak equilibrium reduces
to

V3+Ry(R —Ry)——+—-=0, (1)

where ¢ is the poloidal flux function, R is the distance
from the symmetry axis, R is the major radius, and B(1))
and I'(y) are free functions of ¢ related to the plasma
pressure and current, respectively. Equation (1) is
equivalent to the variational principle 8L =0, where

L= [{4VY*~Ro(R —R)B(¥)—T(4)}dR dZ .
@)

Z is the vertical coordinate in the direction of symmetry
axis, and the integration is over the entire plasma cross
section. In order to describe equilibria with D-shaped
surfaces, we introduce flux coordinates (7,8) defined by

R=R,+o(r)+rcosf,
(3)
Z =rk(r)[sin0—&(r)sin26] ,

where o, «, and § represent the shift from the geometric
center, elongation, and triangularity of the flux surfaces,
respectively, and 0 is a periodic coordinate (0<6 <27,
0=<r=a, a is the horizontal minor radius). In the above
definition, « is not quite the ratio of the vertical to the
horizontal diameters, but is slightly smaller (depending
on 8) than the usual definition of elongation. Likewise
the & in (3) is approximately half the value of the conven-
tionally defined triangularity parameter [1,6,8]. For ex-
ample, our parameters k=1.6 and §=0.17 correspond to
the conventional values of 1.68 and 0.3, respectively
(these values are typical of the JET equilibrium). For the
particular case of k(r)=1 and 6(r)=0, Eq. (3) describes
the conventional shifted-circle model [16] of equilibrium.
In the above equation, r is assumed to be a flux label, so
that y¥y=1(r). Using Eq. (3), the expression for L in Eq.
(2) can be written in terms of (r,6) as

L= [ "[rd°F /x—(r’a)RoB+(r’x8RoB/2

—(r’)'T)dr , 4)

where

=i :”%de, (5)
b =sin%0+k*(cosf—28 cos26)? , (6)
X=1+0'cosf+&sin’0—28(cosf+ o' )cos26

—(6+ 8Kk +rd )sinfsin26 , @)

and k=rk'/k. Primes denote differentiation with respect
to r. For L to be stationary with respect to arbitrary
variations in ¢, o, k, and 8, we must have

20 | TEF | 420k RoB — Lr*k8) RoB +(r ) T
K
=0, ®
2 '
T OF | 2R p=0, 9)
Kk Odo

'

12 12 2
_’-_L.al, +LU}_F_ia_F_rZUROBI

K Ok P K Ok
+1r8R B —rr'=0, (10)

’ !r2 oF /___. rl,b'2 a—F
Kk db' Kk 098

+1r’kRoB'=0 . (11)

For a flux-conserving tokamak, the g profile is specified
and ¢’ is determined from

p="r2 (12)
q

For the geometry given by Eq. (3), Q =1+k/2. Elim-
inating I'" between Egs. (8) and (10), and substituting for
Y’ from (12), the system of equations (8)-(11) reduces to a
set of three coupled nonlinear ordinary differential equa-
tions for o, k, and 8. After some lengthy but straightfor-
ward algebra, these equations can be written in the form

ayro’+a,ri’ +a;r?8"+b,=0,
ayro’ +ayrik’ +ay,urid+b,=0, (13)
a31r0”+a32r2K"+a33r28”+b3=O s
where a,,a,,...,b; (given in the Appendix) are func-
tions of r, B(r), q(r), o', k, K, 8, r&', and averaged in-

tegrals over 8. The input 8 and g profiles are convenient-
ly chosen to be of the form

B(r)=By(1—r2/a®)", (14)
q(r)=qo+(q, —qy)(r2/a®™, (15)

where the subscripts 0 and a refer to values at the mag-
netic axis and plasma boundary, respectively. The
boundary conditions for (13) are

o'=k'=6=0 at r=0,

5=35,

(16)

=0, k=kK,, at r =a ,

where «, and §, are the elongation and triangularity of
the plasma boundary. Of the total nine input parameters
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(Bos V1> 405 9a> V2> Ka» 84> @, and R;) not all are indepen-
dent. In our formulation r is normalized by a (so that
0<r<1), and a and R, occur only in combination with
B, in the form B,/€. By using the latter as a free parame-
ter (instead of B,) we do not need to specify a and R,,.
Equations (13) are solved numerically by employing a
shooting method. A typical high-8 equilibrium for a
JET-type plasma boundary is shown in Fig. 1 for
Bo/€=0.2, vi=1.5, qo=1, q,=3, v,=2, k,=1.6, and
,=0.17.

III. BALLOONING-MODE STABILITY

The linear stability of high-n ideal ballooning modes is
determined by the solution of a one-dimensional eigenval-
ue equation derived by Connor, Hastie, and Taylor [18]:

4
do

Jris

+gY= 17
20 g o, (17)

with boundary conditions
Y—-0 as 06—t , (18)

where Y is the ballooning-mode wave function and is re-
lated to the plasma displacement in the perpendicular
direction, and 6 is the stretched ballooning coordinate.
Functions f and g are related to the equilibrium, and for
our case with the geometry of the flux surfaces given by
Eq. (3), they are

f=%(1+A2) , (19)
_ aXx? Qx? 2
g§=-20= Rk A=Rr, )+ = (1A%, (20)
2R2 0)2
A= MmN+ Ly |, @2=T20FY )
kX b Q°B}
Ri, =300 p, —_Yb | 1 oso—Lsing (22)
t ‘/3 ’ n bs ’
_ (q/Q)
-, \9/Q) 23
ST 4/0) 23
ZR ’
a=-12 Q;’B : (24)
v =(0"'+cos0)sinf —k*(cosO— 28 cos26)
X [(147)sind— (8+6k+r8')sin26] , (25)

M =0+ 0'sin0+K(260 —sin20) /4
—8(3 sinf+5in36) /3 —80'sin20
—(8+8Kk+r&')(3sinf—sin30)/6—(0—6,) , (26)
N =ro"'sinf+ [r%k" /k+r(1—K)](20 —sin26) /4
—r8'(3sinf+sin30)/3—(6ro" +rd'0')sin26
—[8r" /k+ 128" +R(8—8k+r8')+2r8']
X (3sinf—sin360)/6—(6—06,) . (27)
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FIG. 1. Typical equilibrium flux surfaces for JET-type plas-
ma boundary with B,/e=0.2, v,=1.5, ¢o=1, ¢,=3, v,=2,
k,=1.6,and §,=0.17.

In the above, o is the mode frequency, p is the mass den-
sity, s is the magnetic shear, and « is related to the pres-
sure gradient. We define 3., the critical parameter for
the onset of ballooning instability in the first stability re-
gion, as

B.(%)={B,) /e, (28)
where
[ 're2+®0B(rdr
(B,>= 0 T
forx(2+f?)dr

is the volume averaged toroidal beta.
Equation (17) involves parameters a, s, o', ro", k, K,

ri", 8, r8', and r28”. However, using the equilibrium

equations (13), ro”, r2k", and r28" can be expressed in
terms of the other parameters. Therefore, local stability
is determined by the parameters a, s, o', k, K, §, and r§'.
We carry out a detailed parametric study of the effect of
these quantities on the first and second stability boun-
daries in the s-a plane. For the numerical solution of Eq.
(17) we again employ a shooting method. Our results on
the local and global stabilities of ballooning modes are
discussed in Sec. IV. Following Sykes, Turner, and Patel
[11] and Troyon et al. [1], we also use the cylindrical
safety factor . =2AB/(R,l,) (where A is the plasma
cross section area, B the toroidal magnetic field, and Ip
the plasma current) instead of g, to express our results in
order to make the comparison easier with their work. It
should be noted that in our analysis we use rigid pressure
profiles to determine the maximum value of B, for the
ballooning stability. The assumption of rigid pressure
profiles is a simplification based on earlier observations
[16,17] that the error made in the B limit as compared to
that obtained using an optimized profile is not very
significant. However, use of a rigid profile does make our
B-limit value a conservative one.
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IV. RESULTS AND DISCUSSION

A. Local stability analysis

For the local stability analysis, marginal stability boun-
daries are obtained on a given flux surface, and their vari-
ation with the equilibrium parameters o', «, &, 6, and r&’
are studied. Figure 2 shows a representative s-a diagram
where, keeping all other parameters fixed (o0'=k= —0.4,
k=1, r8=0), 8 is varied in the range (—0.2 to 0.2). In
this particular case, it is seen that positive triangularity
has a stabilizing effect, while negative triangularity has a
destabilizing effect on the first stability boundary. Typi-
cally our results from local stability analysis indicate that
for input parameters belonging to a realistic equilibrium
the effect of triangularity of the flux surface is usually sta-
bilizing only for low magnetic shear cases (e.g., for a typi-
cal JET plasma equilibrium, & stabilizes the first bound-
ary when s <1.2).

The effect of triangularity (for both positive and nega-
tive values of 8) on the first stability boundary is found to
be generally destabilizing when o' and k' are negative (a
small stabilizing effect is observed for only the k=1 and
8 >0 case). However, when o' <0 and «’ > 0 the effect of
6> 0 is found to be stabilizing for k> 1 cases. &' >0 usu-
ally enhances this stabilizing effect. The occurrence of
these combinations (o’ <0,k’<0) and (o’ <0,k'>0) on
the equilibrium surfaces, are found to depend on the
values of the boundary elongation, namely «, < 1.3 and
kg > 1.5 respectively. As we will see later, the global sta-
bility results (Fig. 4) are consistent with these results.

B. Global stability analysis

On the basis of the local stability analysis discussed
above, it is possible to obtain a global marginal stability

4
—§=0
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STABILITY 5202
REGION
INSTABILITY
REGION
2r B
S
i
_f
i
0 1 Il 1
0 2 a

FIG. 2. Representative s-a diagram for local ballooning sta-
bility showing the stabilizing effect of the positive triangularity
on the first (marginal) stability boundary (0'=k= —0.4, k=1,
r& =0, and §=0,+0.2).

boundary and to compute 3. defined in Eq. (28) as a func-
tion of k,, 8,, and g.. Briefly, the procedure is as follows.
Following the solution of Eq. (13) to obtain profiles of
equilibrium parameters, Eq. (17) is solved for »?, and sta-
bility is tested on a number of flux surfaces (usually 20
surfaces equally spaced in the minor radius direction). If
all surfaces are found to be stable, then SB,/€ is raised
(otherwise it is lowered) and the stability tests are repeat-
ed until at least one flux surface becomes ballooning un-
stable. The last value of B,/€ (determined with a max-
imum error of 1%) for which all surfaces are stable corre-
sponds to the global marginal stability boundary. The
critical B, is then calculated using Eq. (28). This yields
one point on the global stability diagram. Following such
a procedure, we have examined the global stability
boundary as a function of elongation, triangularity, and
g.. In Fig. 3 we plot B, versus g, for various values of «,
and 8, using the scaling law Eq. (29) (numerically calcu-
lated values of B, are shown by different symbols). The
curves in the solid lines correspond to «,=1 and
8,=0,0.15 and clearly show the destabilizing effect of tri-
angularity for all values of g,. The plots in dash-dots and
dots correspond to k,=1.6 and 2, respectively, and ex-
hibit a stabilizing effect from triangularity. This figure
also shows that 3, depends weakly on the plasma shape
for larger g.. For x, <1.6 and 8, =0, B, depends rather
weakly on g, but this dependence notably increases for
the x, =2 and §,=0.2 cases. In Fig. 4 we have consoli-
dated a large number of our results to schematically show
that the effect of 8, on the stability depends not only on
K, but also on ¢, (e.g., for k, =1.5, the effect is destabiliz-
ing for g.=2.3 but stabilizing otherwise). For «, Z 1.6,
triangularity always increases (3. irrespective of the g,
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FIG. 3. Global stability diagrams for the high-B tokamak
showing the marginal stability boundaries in the B.-g. plane as
k, and 8, change for go=1, v,=1.5, and v,=2 (solid lines:
Kk, =1, 8,=0,0.15; dash-dotted lines: «,=1.6, ,=0,0.17; dot-
ted lines: k,=2,6,=0,0.2).
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FIG. 4. A schematic diagram showing the effect of plasma
boundary triangularity 8, on the stability of high-n ideal bal-
looning modes in the «,-g, plane.

value. In Fig. 5 we show that for §,=0 the boundary
elongation always increases the stabilization for all g,
values. The same effect is also observed by Mauel [17] for
8(r)=0. Note that there is a turnover at x, =1.25, indi-
cating a change in the dependence of 3, on ¢,.

Based on our numerical results we have also obtained a
generalized scaling law for the high-n ideal ballooning 8
limit in terms of parameters «,, §,, and g.. It is given by

Bc = 88Ka—0.6qc—0.81[ 1—o0. 974Ka—0.6qc—0.33]
+973k; 04q, 7465, [1—2.158k; 3¢, %%%5]  (29)

20+

0

Ka

FIG. 5. Plot showing the dependence of B, on the elongation
K, and g, when 8, =0.

and is valid over the following range of parameters:
1=k,=2, 0=§,=0.2, and 1.3<g,<2.8. The scaling
law (29) effectively captures all the qualitative depen-
dences of B, discussed above and shown in Figs. 3-5. It
should be noted that in the limits of small «,, small g,
(k,=1, g.=2) and large «,, large g, (k, =2, q.=4), the
scaling law also reproduces the qualitative features of the
scaling law of Sykes, Turner, and Patel [11]. As exten-
sively discussed in [19], one of the inherent difficulties of
deriving scaling laws from statistical regression analysis
is that they are nonunique (i.e. for the same value of
minimum )2 there can be a number of scaling laws with
different exponents). Keeping that in mind, we have
chosen the scaling law that best captures the various
qualitative features of our analysis, as well as has the least
x? error. In deriving Eq. (29), the g value at the magnet-
ic axis (g,) and the profile shape parameters in the S and
q profiles kept fixed (go=1, v;=1.5, v,=2). We have
used a mixed method for determining the unknowns in
the scaling law in order to minimize the x? error. A
linear least-squares fitting method is used to determine
the linear coefficients in the scaling law, while the un-
known exponents are determined by using a shooting
method. It should be noted that the maximum absolute
error in determining 3, (the maximum value in the first
stability region) numerically is 0.4 and the average x er-
ror in fitting is 0.7. Figure 6 shows the plot of numerical
values of B,, and those predicted from the scaling law us-
ing Eq. (29). The agreement is seen to be quite good. A
numerical study of the dependence of g, on g,, k,, and §,
shows that g, varies approximately linearly with ¢, in
general for all plasma shapes, and the slope of the
straight line depends weakly on the plasma shape.

We have also studied the effect on B, due to variations
in the shape of 8 and q profiles given by Egs. (14) and (15)
by changing the exponents v; and v, for a JET-type plas-

52 o
o
39+
g o
I 26 o
3 o
~ o]
< Ro
13- (g%i
(o]
O [
1 | | 1 1
(o] 13 26 39 52

PBc(NUMERICAL)

FIG. 6. Numerical B, vs. B, as calculated from the derived

scaling law.
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5 1(";2};1,? I. Influence of v, and v, on the ballooning beta limit P ) 1 oF _a_F l quOB,
: 7797, 3 3 2 @
" v, =1 =2 =3 (D)
0.5 40 41 o ST\
-5 19 24 B (=l 2”( --)d6, i=1,2,3,4, j=1,23,
3.0 11 17 24 2
¢1=—}b—2, ¢,= —7 (cos0—26 cos20) ,

ma boundary. The dependence of 5. on the parameters 2b . ) .
v, and v, for ¢,=2, k,=1.6, and §,=0.17 is shown in ¢3:F(Sln9*8 $in26)(sin6 /k),
Table 1. (3. decreases with v, and increases with v,. It
takes a maximum value (8,=60%) for v;=0.5 and b=— lb;sin@ sin26 ,
v,=3. This indicates that a broad B profile and a g
profile with low central shear and high edge shear appear £,=cos6—28 cos20, &,=(sinf—5sin26)sinb/k,
favorable for achieving a high-3, value.

To summarize, we find that the effect of k, is always &;= —sinfsin26,
stabilizing, while the effect of 8, on 3. depends on «, and N P ,
g.. For k,> 1.6, the effect of §, is stabilizing for all g, §4=R(1=R)sin"6—2rd'(cosf + 0 cos26)
values (in the range 1.2-3). These results are consistent —K(8+rd —6ik)sinf sin20 ,
with earlier findings in [8-10]. The improvement in sta- 5 ,
bility is significantly large for high elongation and small /1 =(—bE/X*+rb' /X ),
q.. For a circular boundary (k, =1) the effect of §, is al- b’
ways destabilizing. A study of the dependence of 3, on 8 h, =<
and g profile shapes indicates that broad [ profiles and ¢

e —364— e (cosf—28 cos20)

profiles with sharper gradients in the edge region are 2brd’
favorable. Our results are expressed in a scaling law + 0829)0 ’
which reveals the detailed dependence on elongation, tri-
angularity, and cylindrical safety factor for a wide range hy= < 2. rb’ (sinf— & sin20)(sin6 /)
of parameters. x3
b [Esin9+(r8’—8;?)sin26]sin9>
Xx? K 0’

APPENDIX b b’
—3645In0sin20+ —-sin6 sin29> ,
X

et
The coefficients a,, a,,,. . .,b3 in Eq. (13) are given by ¢ 6

1=81 4n=8nt/fihs, a3=8xn, hszi, he=1k(1—K) ,
=gt 38 an=gntSigntrahs, rb’ = 2k*(cosf—28 cos26){K(cos®—28 cos26)—2rd'cos26] ,
a)3=831tf3813, a31=841, a3=8au Tfehs
238337 /3813, 431841 2 "8 TS eNs jl_’_ <b2(c059 28c0s26)> ’
a33=843, b1=hy+fihet [, 3o X 0
by=hs+fihtfshetfs, by=hs+fehetfq, g—f <2)I((( cosf— 268 cos26)?
where
5 . + b2 KsmG( sinf— 8s1n29)> ,
2 dF OF 4 RoB X o«
fl:agc-r'-’ fr=03+k—2rq'/q )8 ; T | 3F b
0 1 =—<A(sin9—6sin20)(sin0/x)> ,
| oF F r Ok’ X2 6
2
fi= —, f4a== |55 +t—— |,
K(2+K) Q |r "  k(2+F) a—F—=<—4K200s20(cos6—28cosZO)/X
PSRRI S TIPSRy
fs=4+k=2rq"/q) " (247 /9 A +(b/X*){2cos26(0’ +cosb)
LE L [o—s4r8)/2 | PR +(1+E)sin9sin20}>,
£ , )
K K(2+K) ok 19F _| b . ..
=(—=sinfsin26) .
r 38" 2 6
f :l 1 oF
¢ 0 |r 38 (F,b,X,Q are given in Sec. II.)
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